Audubon Public Schools

Grade 8: Physical Science

Curriculum Guide

Developed by:

Mr. Matthew Harter

Mr. Christopher Sylvester

August 15, 2018

Table of Contents

Cover Page	Page 1
Table of Contents	Page 2
Course Description	Page 3
Overview / Progressions	Page 4
Unit 1 - Kinematics and Forces	Page 5
Unit 2 - Energy	Page 15
Unit 3 - Structures and Properties of Matter	Page 27
Unit 4 - Chemical Reactions	Page 38
Appendix	Page 46

Course Description

Grade 8: Physical Science

Physical Science is a course designed to allow students to explore the basic concepts of physics and chemistry. Students will be introduced to the history and nature of science with a focus on matter and energy and their interactions. Specific topics examined during the year include, but are not limited to, kinematics, forces, gravity, different types of energy, the nature of matter, classification of matter, atomic structure, periodic table, chemical bonding, and chemical reactions. Students will be encouraged to explore the relationship between science and everyday life with hands on activities. Students enrolled in physical science need to have successfully passed 7th grade life science.

Overview / Progressions

Overview		Physical Science	Engineering Design
Unit 1 - Kinematics and Forces	Focus standards (Objectives)	MS-PS2-1 MS-PS2-2 MS-PS2-3 MS-PS2-4 MS-PS2-5	MS-ETS1-1 MS-ETS1-2 MS-ETS1-3 MS-ETS1-4
Unit 2 - Energy	Focus standards (Objectives)	MS-PS3-1 MS-PS3-2 MS-PS3-5 MS-PS4-1 MS-PS4-2 MS-PS4-3	MS-ETS1-1 MS-ETS1-2 MS-ETS1-3 MS-ETS1-4
Unit 3 - Matter	Focus standards (Objectives)	MS-PS1-1 MS-PS1-3 MS-PS1-4 MS-PS3-3 MS-PS3-4	MS-ETS1-1 MS-ETS1-2 MS-ETS1-3 MS-ETS1-4
Unit 4 - Chemical Reactions	Focus standards (Objectives)	MS-PS1-2 MS-PS1-5 MS-PS1-6	MS-ETS1-1 MS-ETS1-2 MS-ETS1-3 MS-ETS1-4

Grade 8: Physical Science

	Physical Science	Grade 8	Unit 1	Marking Period 1
--	------------------	---------	--------	------------------

Grade 8: Physical Science Curriculum Guide

Physical Science Unit 1 - Kinematics and Forces: (45 Instructional Days)

In this unit, students will develop an understanding as to why some objects will keep moving, why objects fall to the ground and why some materials are attracted to each other while others are not. Students answer the question, "How can one describe physical interactions between objects and within systems of objects?" At the middle school level, the PS2 Disciplinary Core Idea from the NRC Framework is broken down into two sub-ideas: Forces and Motion and Types of interactions. By the end of middle school, students will be able to apply Newton's Third Law of Motion to relate forces in order to explain the motion of objects. Students also apply ideas about gravitational, electrical, and magnetic forces to explain a variety of phenomena including beginning ideas about why some materials attract each other while other repe. Students also develop ideas that objects can exert forces on each other even though the objects are not in contact, through fields

Overarching Essential Questions	Overarching Enduring Understandings
 What are forces? What causes the motion of objects to change? Why are some objects attracted to each other while other repel each other? What are Newton's laws of motion? How can Newton's laws of motion be used to describe the interaction between different objects within a system? 	 Forces can be pushes or pulls Some forces only occur while objects are in contact while other forces can act even when the objects are separated by vast distances Some forces always result in the attraction between 2 objects such as gravity while other forces such as magnetism can result in either an attractive or repellant interaction. Newton's laws of motion can be used to mathematically calculate the forces that occur between objects and the resulting effect on motion

Student Learning Objectives		
Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.*	l	
Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.	MS-PS2-1	

Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension	
Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	
Clarification Statement: Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.	MS-PS2-2
Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.	
Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.	
Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.	MS-PS2-3
Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.	
Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.	
Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.	MS-PS2-4
Assessment Boundary: Assessment does not include Newton's Law of Gravitation or Kepler's Laws.	
Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.	
Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations.	MS-PS2-5

Assessment Boundary: Assessment is limited to electric and magnetic fields, and limited to qualitative evidence for the existence of fields.	
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	MS-ETS1-1
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	MS-ETS1-2
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success	MS-ETS1-3
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	MS-ETS1-4

Education:ry Core IdeasCrosscutting ConcepMotionCause and Effectnteracting objects, the the first object on the equal in strength to the ond object exerts onCause and effect relationship used to predict phenomena in designed systems. (MS-PS2- PS2-5)
ry Core IdeasCrosscutting ConcepMotionCause and EffectInteracting objects, the the first object on the equal in strength to the ond object exerts onCause and effect relationship used to predict phenomena in designed systems. (MS-PS2- PS2-5)
Motion nteracting objects, the the first object on the equal in strength to the ond object exerts onCause and Effect• Cause and effect relationship used to predict phenomena ir designed systems. (MS-PS2- PS2-5)
 Cause and effect relationship used to predict phenomena ir designed systems. (MS-PS2- PS2-5)
 a opposite direction a w). (MS-PS2-1) b object is determined b forces acting on it; if c the object is not zero, c nange. The greater the ct, the greater the force e the same change in given object a larger Systems and System Models Models can be used to repress systems and their interactions inputs, processes and outputs energy and matter flows with systems. (MS-PS2-1),(MS-P
la 1 (c) 1 (c)

needed to do the gathering, how	force causes a larger change in motion.	over time and forces at different scales.
measurements will be recorded, and	(MS-PS2-2)	(MS-PS2-2)
how many data are needed to support a	• All positions of objects and the	
claim. (MS-PS2-2)	directions of forces and motions must	
• Conduct an investigation and evaluate	be described in an arbitrarily chosen	Connections to Engineering, Technology,
the experimental design to produce data	reference frame and arbitrarily chosen	and Applications of Science
to serve as the basis for evidence that	units of size. In order to share	
can meet the goals of the investigation.	information with other people, these	Influence of Science, Engineering, and
(MS-PS2-5)	choices must also be shared. (MS-PS2-	Technology on Society and the Natural
Constructing Explanations and	2)	World
Designing Solutions	PS2.B: Types of Interactions	• The uses of technologies and any
• Apply scientific ideas or principles to	Electric and magnetic (electromagnetic)	limitations on their use are driven
design an object, tool, process or	forces can be attractive or repulsive,	by individual or societal needs,
system. (MS-PS2-1)	and their sizes depend on the	desires, and values; by the findings
Engaging in Argument from Evidence	magnitudes of the charges, currents, or	of scientific research; and by
• Construct and present oral and written	magnetic strengths involved and on the	differences in such factors as
arguments supported by empirical	distances between the interacting	climate, natural resources, and
evidence and scientific reasoning to	objects. (MS-PS2-3)	economic conditions. (MS-PS2-1)
support or refute an explanation or a	Gravitational forces are always	
model for a phenomenon or a solution	attractive. There is a gravitational force	
to a problem. (MS-PS2-4)	between any two masses, but it is very	
	small except when one or both of the	
	objects have large mass—e.g., Earth	
Connections to Nature of Science	and the sun. (MS-PS2-4)	
	• Forces that act at a distance (electric,	
Scientific Knowledge is Based on	magnetic, and gravitational) can be	
Empirical Evidence	explained by fields that extend through	
• Science knowledge is based upon	space and can be mapped by their effect	
logical and conceptual connections	on a test object (a charged object, or a	
between evidence and	ball, respectively), (MS-PS2-5)	
explanations. (MS-PS2-2),(MS-	···· , ·······························	
PS2-4)		
	•	

Embedded English Language Arts/Literacy and Mathematics		
English Langı	uage Arts/Literacy-	
<u>RST.6-8.1</u>	<u>Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.</u> (<i>MS-PS2-1</i>),(<i>MS-PS2-3</i>)	
<u>RST.6-8.3</u>	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS2-1),(MS-PS2-2),(MS-PS2-5)	
<u>WHST.6-8.1</u>	Write arguments focused on discipline-specific content. (MS-PS2-4)	
<u>WHST.6-8.7</u>	Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS2-1),(MS-PS2-2),(MS-PS2-5)	
Mathematics -	_	
<u>MP.2</u>	Reason abstractly and quantitatively. (MS-PS2-1),(MS-PS2-2),(MS-PS2-3)	
<u>6.NS.C.5</u>	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)	
<u>6.EE.A.2</u>	Write, read, and evaluate expressions in which letters stand for numbers. (MS-PS2-1),(MS-PS2-2)	
<u>7.EE.B.3</u>	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-PS2-1),(MS-PS2-2)	
<u>7.EE.B.4</u>	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-PS2-1),(MS-PS2-2)	

Three-Dimensional Teaching and Learning

In this unit, students will transition from the chemical changes of matter to the physical forces acting upon matter. This will begin with an investigation of motion. During this time, students will design and construct experiments to demonstrate various means of changing the motion of objects. Through analysis of these experiments, students will develop the understanding that motion is the result of forces acting on the object and the matter contained within it. By comparing the effect of multiple forces acting on an object, the students will learn to solve for the net force acting on an object and predict the resulting effect on object's motion.

By utilizing cause and effect relationships on stable systems, the students will engage in collaborative activities which allow them to compare various types of force interactions between objects. Using the ideas developed during these activities, students will construct arguments to debate whether or not forces between objects only occur when the objects are in direct contact with each other. At the conclusion of this debate, students will be able to cite evidence and support the claim that some forces occur when objects are in contact with each other forces can act through force fields. Furthermore, students will design and create demonstrations to contrast attractive and repellent forces such as electricity and magnetism.

This unit will conclude with an overview of Newton's 3 Laws of Motion. Through the use of models, diagrams, and computer simulations, the students will be able summarize and explain each of Newton's laws. In addition, students will be able to algebraically solve Newton's 2nd Law: F = ma. Furthermore, students will be able to describe the action and reaction forces that occur when 2 objects exert forces on each other and explain how these forces are present in our everyday life. To conclude this unit, students will apply their understanding of Newton's laws to design, construct, test, and modify a device that is optimized by utilizing the principles described within Newton's Laws.

Prior Learning

- Mass is a measurement of the matter contained within an object
- Mass and weight are related to each other, but are not the same
- Gravity is a force that pulls us towards the center of the Earth
- How to carry out multi-step mathematical calculations
- How to add and subtract negative numbers

Part A: Forces and Motion			
Concepts	Formative Assessment		
• Forces are pushes or pulls that occur between objects	Students who understand the concepts are able to:		
• To change the motion of an object, a force must be applied	• Explain the relationship between forces acting on an object and the relative motion of the object		
• When multiple forces are acting on an object, the net force must be calculated to determine if the object's motion will change	• Solve for the net force when multiple forces are acting on an object		
• The motion of an object is dependent on two factors, the mass of the object and the size of the force	Predict differences in motion for scenarios involving different masses or different magnitude of forces		

Part B:	Types	of Interactions
---------	-------	-----------------

Concepts	Formative Assessment
• There are several different types of forces that can occur between objects	Students who understand the concepts are able to: Model and demonstrate examples to illustrate that forces
• Some forces are contact forces and will only occur when	can occur through contact or through force fields
the objects are in direct contact with each other Some forces work through force fields and do not	• Employ examples from everyday life to justify that
• some forces work through force fields and do not require the objects to be in contact with each other	 Design an electric circuit and modify the circuit in order to
• Gravitational forces are always attractive and occur between any 2 objects with mass	explain the effect of varying the current or magnitude of charge
• Electric forces occur due to the imbalance and movement of charge	• Construct a simple (homopolar) motor and manipulate the design to demonstrate the effect of charge, current, or
• Electric and magnetic forces can be attractive or repulsive and are dependent on the magnitudes of the charges, currents, or magnetic strengths	varying magnetic strength

Part C: Newton's Laws of Motion	
Concepts	Formative Assessment
 Newton's 3 Laws of Motion are used to describe the forces and motion between objects For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction The overall forces and resulting motion can be mathematically calculated using Newton's Laws 	 Formative Assessment Students who understand the concepts are able to: Mathematically calculate the force, mass, or acceleration of an object using Newton's 3 Laws of Motion Justify that forces always occur in pairs of equal strength but opposite direction by modeling or explaining examples such as jumping, walking, running, skateboarding, swimming, etc Formulate an explanation as to why the motion of objects is different if the forces occurring between them are equal in magnitude Design and construct a vehicle that employs Newton's 3
	Laws to protect an egg (e.g., egg drop from stadium or egg car on track)

Modifications: Teachers identify the modifications that they will use in the unit. The unneeded modifications can then be deleted from the list. (See NGSS Appendix D)

- Restructure lesson using UDL principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniquesauditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).

- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide ELL students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities

Leveraging English Language Arts/Literacy and Mathematics

English Language Arts/Literacy-

- Students will create and follow multi-step procedures which must be planned and recorded
- Students will utilize a laboratory notebook for the duration of the course

Mathematics-

• Students will employ algebraic techniques to solve for unknown variables with respect to Newton's Laws.

Samples of Open Education Resources for this unit:

<u>Phet-Forces and Motion</u>-This site provides students with a simulation to investigate the relationship between the forces acting on an object and the motion of that object

BrainPop-Forces-This site provides an overview of forces and how they can cause changes in motion

Khan Academy-Forces-This site provides free online lessons on forces and Newton's laws of motion

<u>Phet-Gravity</u>-This online simulation will provide students with an overview of the gravitational force and what factors affect the strength of this force

Your Weight on Other Worlds - See what you and other objects would weigh on various planets, moon, and stars.

Physical Science	Grade 8	Unit 2	Marking Period 2
------------------	---------	--------	------------------

Physical Science Unit 2-Energy, Waves, and Electromagnetic Radiation: (45 Instructional Days)

In this unit, students will formulate an answer to the question, "How can energy be transferred from one object or system to another?" At the middle school level, the PS3 Disciplinary Core Idea from the NRC Framework is broken down into sub-core ideas: Definitions of Energy, Conservation of Energy and Energy Transfer, and the Relationship between Energy and Forces. Students develop their understanding of important qualitative ideas about energy including that the interactions of objects can be explained and predicted using the concept of transfer of energy from one object or system of objects to another, and that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students will also come to develop an understanding of the relationship between force and energy.

Also in this unit, students will formulate an answer to the question, "What are the characteristic properties of waves and how can they be used?" At the middle school level, the PS4 Disciplinary Core Idea from the NRC Framework is broken down into Wave Properties, Electromagnetic Radiation, and Information Technologies and Instrumentation. Students are able to describe and predict characteristic properties and behaviors of waves when the waves interact with matter. Students can apply an understanding of waves as a means to send digital information

Overarching Essential Questions	Overarching Enduring Understandings
• How can energy be transferred between objects in a system?	• Energy is transferred from one object to another through forces
• What is the difference between kinetic and potential energy?	 Kinetic energy is the energy of motion and depends only on an object's mass and velocity.
• What factors affect the energy of an object?	 Detential energy is the stored energy of an object
• What happens to the total energy of a system when objects interact?	 Potential energy is the stored energy of an object Potential energy varies based on the relative position of the object to a reference point.
• What are the characteristic properties of waves?	object to a reference point

How can the characteristic properties of waves be used?What is the relationship between waves and	• Although energy can be transferred between objects in a system, the total amount of energy in the system must remain constant
electromagnetic radiation?What happens when waves interact with other materials?	 Waves have 3 characteristic properties: wavelength,
• What happens when waves interact with other materials.	frequency, and amplitude
	• Most waves require a medium through which to travel
	• Digital information can be sent using wave pulses
	• Electromagnetic radiation is a wave that does not need a medium in order to travel
	• When waves interact with other materials, they can be transmitted, bent, absorbed, or reflected depending on the material they come in contact with

Student Learning Objectives	
Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.	
Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.	MS-PS3-1
Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.	
Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.	MS-PS3-2
Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.	

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other	MS-PS3-5
representation of the energy before and after the transfer in the form of temperature changes or motion of object.	
Assessment Boundary: Assessment does not include calculations of energy.	
Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.	
Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.	MS-PS4-1
Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.	
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings,	MS-PS4-2
simulations, and written descriptions.	
Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.	
Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	
Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.	MS-PS4-3
Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.	
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	MS-ETS1-1

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	MS-ETS1-2
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success	MS-ETS1-3
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	MS-ETS1-4

The Student Learning Objectives above were developed using the following elements from the NRC document A Framework for K-12		
Science Education:		
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts

Developing and Using Models	PS3.A: Definitions of Energy	Scale, Proportion, and Quantity
• Develop a model to describe	• Motion energy is properly called kinetic	• Proportional relationships (e.g. speed as
unobservable mechanisms. (MS-PS3-2)	energy; it is proportional to the mass of	the ratio of distance traveled to time
• Develop and use a model to describe	the moving object and grows with the	taken) among different types of
phenomena. (MS-PS4-2)	square of its speed. (MS-PS3-1)	quantities provide information about
Analyzing and Interpreting Data	• A system of objects may also contain	the magnitude of properties and
Construct and interpret graphical	stored (potential) energy, depending on	processes. (MS-PS3-1),(MS-PS3-4)
displays of data to identify linear and	their relative positions. (MS-PS3-2)	Systems and System Models
nonlinear relationships. (MS-PS3-1)	PS3.B: Conservation of Energy and	Systems and System Models
Engaging in Argument from Evidence	Energy Transfer	• Models can be used to represent
• Construct, use, and present oral and	• When the motion energy of an object	systems and their interactions – such as
written arguments supported by	changes, there is inevitably some other	inputs, processes, and outputs – and
empirical evidence and scientific	change in energy at the same time.	energy and matter flows within
reasoning to support or refute an	(MS-PS3-5)	systems. (MS-PS3-2)
explanation or a model for a	PS3.C: Relationship Between Energy	Energy and Matter
phenomenon. (MS-PS3-5)	and Forces	• Energy may take different forms (e.g.
Using Mathematics and Computational	• When two objects interact, each one	energy in fields, thermal energy, energy
Thinking	exerts a force on the other that can	of motion). (MS-PS3-5)
• Use mathematical representations to	cause energy to be transferred to or	
describe and/or support scientific	from the object. (MS-PS3-2)	Dattarma
conclusions and design solutions. (MS-	PS4.A: Wave Properties	Faiterns
PS4-1)	• A simple wave has a repeating pattern	• Graphs and charts can be used to identify patterns in data (MS PS4 1)
Obtaining, Evaluating, and	with a specific wavelength, frequency,	Structure and Function
Communicating information	and amplitude. (MS-PS4-1)	• Structures can be designed to serve
• Integrate quantative scientific and tashnisal information in written text	• A sound wave needs a medium infougn	• Structures can be designed to serve
with that contained in media and visual	PS4 P: Electromognetic Dediction	account properties of different
displays to clarify claims and findings	When light shines on an object it is	materials and how materials can be
(MS-PS/I-3)	• when light sinies on an object, it is reflected absorbed or transmitted	shaped and used (MS-PS4-2)
	through the object depending on the	• Structures can be designed to serve
	object's material and the frequency	particular functions. (MS-PS4-3)
Connections to Nature of Science	(color) of the light (MS-PS4-2)	r
	(color) of the light. (110 1 b+ 2)	

Scientific Knowledge is Based on	•	The path that light travels can be traced	Connections to Engineering, Technology,
Empirical Evidence		as straight lines, except at surfaces	and Applications of Science
• Science knowledge is based upon		between different transparent materials	
logical and conceptual connections		(e.g., air and water, air and glass) where	Influence of Science, Engineering, and
between evidence and explanations		the light path bends. (MS-PS4-2)	Technology on Society and the Natural
(MS-PS3-4),(MS-PS3-5),(MS-PS4-1)	•	A wave model of light is useful for	World
		explaining brightness, color, and the	• Technologies extend the measurement,
		frequency-dependent bending of light at	exploration, modeling, and
		a surface between media. (MS-PS4-2)	computational capacity of scientific
	•	However, because light can travel	investigations. (MS-PS4-3)
		through space, it cannot be a matter	
		wave, like sound or water waves. (MS-	
		PS4-2)	Connections to Nature of Science
	P	S4.C: Information Technologies and	
	In	strumentation	Science is a Human Endeavor
	•	Digitized signals (sent as wave pulses)	• Advances in technology influence the
		are a more reliable way to encode and	progress of science and science has
		transmit information. (MS-PS4-3)	influenced advances in technology.
			(MS-PS4-3)

Embedded English Language Arts/Literacy and Mathematics

English Language Arts/Literacy -

- **RST.6-8.1** Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (*MS-PS3-1*),(*MS-PS3-5*)
- **RST.6-8.7** Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-1)

WHST.6-8.1 Write arguments focused on discipline content. (MS-PS3-5)

<u>SL.8.5</u>	Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS3-2)
<u>RST.6-8.2</u>	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-PS4-3)
<u>RST.6-8.9</u>	Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-PS4-3)
<u>WHST.6-8.9</u>	Draw evidence from informational texts to support analysis, reflection, and research. (MS-PS4-3)
Mathematics –	
<u>MP.2</u>	Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-4),(MS-PS3-5)
<u>6.RP.A.1</u>	<u>Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities.</u> (MS-PS3-1),(<i>MS-PS3-5</i>)
<u>6.RP.A.2</u>	<u>Understand the concept of a unit rate a/b associated with a ratio a:b with b \neq 0, and use rate language in the context of a ratio relationship. (<i>MS-PS3-1</i>)</u>
<u>7.RP.A.2</u>	Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-5)
<u>8.EE.A.1</u>	Know and apply the properties of integer exponents to generate equivalent numerical expressions. (MS-PS3-1)
<u>8.EE.A.2</u>	Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational. (<i>MS-PS3-1</i>)
<u>8.F.A.3</u>	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-5)
<u>MP.4</u>	Model with mathematics. (MS-PS4-1)

Three-Dimensional Teaching and Learning

In this unit, students will expand their understanding of motion by investigating the energy associated with the motion of objects. After using models, diagrams, and computer simulations, students will be able to summarize and explain the concept of kinetic energy. In addition, students will conduct and analyze the results of collaborative activities to determine and justify the relationship between mass and speed with respect to kinetic energy.

After students are able to accurately explain the concept and factors affecting the kinetic energy of an object, the focus will shift towards energy of non-moving objects. Students will analyze everyday scenarios to debate whether or not objects at rest contain energy. At the conclusion of this debate, students will be able to support the claim that objects at rest contain energy known as potential energy and that the amount of potential energy is related to the position of the object.

Students will temporarily transition from the motion of object to the motion of waves and wave properties. Through the use of models and simulations, students will develop an understanding for the various properties of waves and how waves propagate. The focus will begin with traditional waves such as sound and water and progress to electromagnetic waves such as light. During these investigations, students will design and construct experiments to formulate explanations regarding the ability of waves to be transmitted, absorbed, bent, or reflected when coming into contact with different materials. Students will then present and cite evidence to support the claim that interactions between waves and other materials can be structurally designed to take advantage of

these properties (such as stealth technology to absorb radio waves). This will then be applied to the idea of communicating via digital pulse waves.

This unit concludes with an investigation into energy transfer and the conversion of energy between kinetic and potential energy. Students will design, test, and optimize a Rube Goldberg Machine to perform a menial task such as watering a plant or popping a balloon using what they learned about the principles of forces, energy, and the interaction of objects.

Prior Learning

- The motion of objects changes as the result of forces
- When two objects interact, forces occur between them resulting in a change in motion
- Gravitational forces are always attractive
- Objects are pulled towards the center of the Earth due to the gravitational interaction between the Earth and the object
- Sound and water travel in waves
- Our ears have evolved to convert sound waves into electrical signals
- Since waves are in motion, they carry energy
- Mathematical properties such as proportionality and inverse relationships
- Basic mathematical skills necessary for constructing and interpreting graphs

Part A: Kinetic and Potential Energy

Concepts		Formative Assessment
• The motion energy of an object is kr	own as kinetic	Students who understand the concepts are able to:
energy		• Explain what is meant by kinetic and potential energy
• Kinetic energy is proportional to the object and grows with the square of	mass of the moving its speed	

 The stored energy of an object in a system is known as potential energy, and can take on many forms The amount of potential energy is determined by the relative position of an object to a reference point 	 Design and construct an experiment to compare the effect of mass and speed on an object's energy and decide which factor affects an object's kinetic energy more Design and construct an experiment to identify the relationship between potential energy and position
	• Compare different amounts of kinetic and potential energies in different systems by calculating given characteristics of the system

Part B: Transfer of Energy			
Concepts	Formative Assessment		
• The total energy of the system must remain constant;	Students who understand the concepts are able to:		
 Any change in motion results in a change in energy 	• Model examples to demonstrate the conversion of potential energy into kinetic energy		
• When forces occur between objects, energy is	• Summarize the "Law of Conservation of Energy"		
transferred	• Design and construct an experiment to illustrate the transfer of		
• Waves have 3 characteristic properties: wavelength,	energy between objects		
frequency, and amplitude	• Defend, mathematically, that the total amount of energy in a		
• The amplitude of a wave is related to the energy it	system remains constant		
contains	• Explain the 3 properties of waves and the relationship between		
• Sound and water waves require a medium to pass	those properties		
through in order to travel	• Justify that the larger the amplitude of a wave, the more energy it carries		
	• Cite evidence to defend the claim that sound and water waves require a medium to pass through in order to travel		

Part C: Information Transfer and Technology				
Concepts	Formative Assessment			
• Electromagnetic waves are self-propagating and can travel through the vacuum of space	 Students who understand the concepts are able to: Compare and contrast analog and digital methods of 			
• Electromagnetic radiation can be broken down into	transmitting information			
categories based on the frequency of the wave.	• Devise and implement a method to transmit messages to other			
• The path of wave can be traced as a straight line except at the surfaces of different materials	students using wave pulses			
Waves can be transmitted, bent, absorbed, or reflected	• Compare and contrast matter dependent waves with electromagnetic waves.			
based on the material they encounter	• Categorize electromagnetic waves based on their frequency			
• Waves can be used to transmit information	• Model the ability of a light wave to be transmitted, bent,			
• Digitized signals sent as wave pulses are a more reliable method to transmit information	absorbed, or reflected by constructing demonstrations using classroom materials			

Modifications: Teachers identify the modifications that they will use in the unit. The unneeded modifications can then be deleted from the list. (See NGSS Appendix D)

- Restructure lesson using UDL principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniquesauditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).

- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide ELL students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities

Leveraging English Language Arts/Literacy and Mathematics

English Language Arts/Literacy-

- Students will be writing procedures, recording data, and presenting conclusions
- Integration of data sets to strengthen arguments
- Students will be required to compare and contrast different sources of information
- Students will be citing specific forms of evidence

Mathematics-

- Students will create data tables and incorporate graphs to represent the data
- Students will apply graphical analysis to strengthen their conclusions
- Students will be solving algebraic problems to determine the kinetic, potential, and total energy of objects in a system
- Students will be working with proportional and inverse relationships

Samples of Open Education Resources for this unit:

Phet-Energy Skate Park-This simulation provides students with the ability to investigate kinetic and potential energy

BrainPop-Kinetic Energy-This site provides an overview of kinetic energy and the factors that influence the kinetic energy of an object

BrainPop-Potential Energy-This site provides an overview of potential energy and the factors that influence the potential energy of an object

Khan Academy-Energy-This online tutorial has sections devoted to the conservation of energy

<u>Phet-Wave on a String</u>- This simulation allows students to investigate the various properties of waves

Phet-Sound Waves-This simulation allows students to get a visual representation of sound waves and their properties

<u>Phet-Bending Light</u>- This simulation provides a method to investigate the ability of light to be bent by various materials

BrainPop-Electromagnetic Spectrum- This site provides an overview of the electromagnetic spectrum including visual light

Khan Academy-Binary-This tutorial provides an introduction to the binary system used to transmit digital information

	Physical Science	Grade 8	Unit 3	Marking Period 3
--	------------------	---------	--------	------------------

Physical Science Unit 1-Structures and Properties of Matter: (45 Instructional Days)

In this unit, students will learn to formulate an answer to the questions: "How can particles combine to produce a substance with different properties? How does thermal energy affect particles?" by building understanding of what occurs at the atomic and molecular scale. By the end of middle school, students will be able to apply understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They will be able to provide molecular level accounts to explain states of matters and changes between states.

	Overarching Essential Questions	Overarching Enduring Understandings
٠	How can particles combine to produce a substance with different properties?	• Matter can have both physical and chemical properties.
•	What are the different properties of matter and how can these be used to identify different substances?	• Characteristic properties such as density can be used to identify different substances
•	How can matter be classified and what are the different classifications?	• Matter can be classified as a pure substance or mixture and then further classified as an element, compounds, heterogeneous mixture or homogeneous mixture
•	How can thermal energy affect particles?	• Adding or removing thermal energy affects the motion
•	What accounts for the differences between solids, liquids, and gases?	and interaction of particles which accounts for their physical state (solid, liquid, or gas)

Student Learning Objectives		
Develop models to describe the atomic composition of simple molecules and extended structures.		
Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or	MS-PS1-1	

diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.	
Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required.	
Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.	
Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.	MS-PS1-3
Assessment Boundary: Assessment is limited to qualitative information.	
Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.	
Clarification Statement: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.	MS-PS1-4
Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.*	
Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.	MS-PS3-3
Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.	
Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of that sample.	
Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.	MS-PS3-4

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.	
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	MS-ETS1-1
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	MS-ETS1-2
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success	MS-ETS1-3
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	MS-ETS1-4

The Student Learning Objectives above were developed using the following elements from the NRC document A Framework for K-12			
Science Education:			
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
Developing and Using Models	PS1.A: Structure and Properties of	Cause and Effect	
• Develop a model to predict and/or	Matter	• Cause and effect relationships may be	
describe phenomena. (MS-PS1-1),(MS-	• Substances are made from different	used to predict phenomena in natural or	
PS1-4)	types of atoms, which combine with	designed systems. (MS-PS1-4)	
Obtaining, Evaluating, and	one another in various ways. Atoms	Scale, Proportion, and Quantity	
Communicating Information	form molecules that range in size from	• Time, space, and energy phenomena	
• Gather, read, and synthesize	two to thousands of atoms. (MS-PS1-1)	can be observed at various scales using	
information from multiple appropriate	• Each pure substance has characteristic	models to study systems that are too	
sources and assess the credibility,	physical and chemical properties (for	large or too small. (MS-PS1-1)	
accuracy, and possible bias of each	any bulk quantity under given	• Proportional relationships (e.g. speed as	
publication and methods used, and	conditions) that can be used to identify	the ratio of distance traveled to time	
describe how they are supported or now	it. (MS-PS1-3) (Note: This Disciplinary	taken) among different types of	
supported by evidence. (MS-PS1-3)	Core Idea is also addressed by MS-	quantities provide information about	
Planning and Carrying Out	<i>PS1-2.)</i>	the magnitude of properties and	
Investigations	• Gases and liquids are made of	processes. (MS-PS3-4)	
	molecules or inert atoms that are	Structure and Function	

 Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support the claim. (MS-PS3-4) Constructing Explanations and Designing Solutions 	 moving about relative to each other. (MS-PS1-4) In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS- PS1-4) Solids may be formed from molecules, or they may be extended structures with 	 Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3) Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS3-3)
Designing Solutions	of they may be extended structures with repeating subupits (a.g. erwetele) (MS	Connections to Engineering,
• Apply scientific ideas of principles	DS1 1)	Technology, and Applications of Science
design of an object tool process	• The changes of state that occur with	Interdemendance of Science
or system (MS-PS3-3)	variations in temperature or pressure	Engineering and Technology
	can be described and predicted using	 Engineering advances have led to
	these models of matter (MS-PS1-4)	important discoveries in virtually every
Connections to Nature of Science	PS3.A: Definitions of Energy	field of science, and scientific
	• Temperature is a measure of the	discoveries have led to the development
Scientific Knowledge is Based on	average kinetic energy of particles	of entire industries and engineered
Empirical Evidence	of matter. The relationship between	systems. (MS-PS1-3)
• Science knowledge is based upon	the temperature and the total	Influence of Science, Engineering and
logical and conceptual connections	energy of the system depends on	Technology on Society and the Natural
between evidence and explanations	the types, states, and amounts of	World
(MS-PS3-4)	matter present. (MS-PS3-3),(MS-	• The uses of technologies and any
	PS3-4)	limitation on their use are driven by
	PS3.B: Conservation of Energy and	individual or societal needs, desires,
	Energy Transfer	and values; by the findings of scientific
	• The amount of energy transfer	research; and by differences in such
	needed to change the temperature	factors as climate, natural resources,
	of a matter sample by a given	and economic conditions. Thus
	amount depends on the nature of	technology use varies from region to
		region and over time. (MS-PS1-3)

	the matter, the size of the sample,	
	and the environment.(MS-PS3-4)	
	• Energy is spontaneously	
	transferred out of hotter regions or	
	objects and into colder ones. (MS-	
	PS3-3)	
ET	S1.A: Defining and Delimiting an	
Eng	gineering Problem	
	• The more precisely a design task's	
	criteria and constraints can be	
	defined, the more likely it is that	
	the designed solution will be	
	successful. Specification of	
	constraints includes consideration	
	of scientific principles and other	
	relevant knowledge that is likely to	
	limit possible solutions. (secondary	
	to MS-PS3-3)	
ET	S1.B: Developing Possible Solutions	
	• A solution needs to be tested, and	
	then modified on the basis of the	
	test results in order to improve it.	
	There are systematic processes for	
	evaluating solutions with respect to	
	how well they meet criteria and	
	constraints of a problem.	
	(secondary to MS-PS3-3)	
	test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary to MS-PS3-3)	

Embedded English Language Arts/Literacy and Mathematics

English Language Arts/Literacy-

RST.6-8.1	Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.(MS-PS1-3)
RST.6-8.3	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4)
RST.6-8.7	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-1),(MS-PS1-4)
WHST.6-8.7	Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3),(MS-PS3-4)
WHST.6-8.8	Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-PS1-3)
Mathematics-	
MP.2	Reason abstractly and quantitatively. (MS-PS1-1),(MS-PS3-4)
MP.4	Model with mathematics. (MS-PS1-1)
6.RP.A.3	Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-1)
6.NS.C.5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS1-4)

8.EE.A.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1)

6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-PS3-4)

Three-Dimensional Teaching and Learning

In this unit, students will expand their understanding of matter and its properties. Through the use of models, drawings, and computer simulations, the students will conclude that different substances are composed from different arrangement of atoms. In addition, students will develop an understanding that different substances have different properties.

Students will then use the differences in properties to create a classification system for different types of substances. By employing this classification system, the students will be able to categorize materials as pure substances or mixtures and then further organize the substances as elements, compounds, heterogeneous mixtures, or homogeneous mixtures.

Besides classifying substances by composition, scientists also categorize substances by their physical state (solid, liquid, or gas). Through the use of experiments (such as generating and analyzing a phase diagram by melting ice), models, diagrams, and computer simulations, students will be able to explain that the state of matter is related to the kinetic energy of the particles within the system and that during phase changes the energy is associated with forming or breaking the forces that occur between particles (intermolecular forces).

By employing cause and effect relationships, models to represent the atomic scale, and the relationship between molecular structure and material function, the students will be able to collaboratively obtain, evaluate, summarize, and communicate information using the scientific process.

Prior Learning

- Matter is anything that has mass and volume
- An understanding of ratios and how to interpret a ratio
- Observations are made using our senses
- Energy can be transferred between objects and substances
- Kinetic energy is the energy of motion

Pa	Part A: Kinetic Molecular Theory				
	Concepts	Formative Assessment			
•	The motion of particles is affected by the amount of energy contained in the system	<i>Students who understand the concepts are able to:</i>Relate the motion of a particle to the temperature of the system			
•	Temperature is a measurement of the average kinetic energy of the particles	• Develop models and describe what occurs on the particle level when thermal energy is added or removed and during phase			
•	Adding thermal energy increases the kinetic energy of the	changes			
	particles	• Analyze and interpret a phase diagram to describe the structural			
•	Removing thermal energy decreases the kinetic energy of the particles	changes to the particles and their relative motion throughout			
•	Solids are composed of particles with low energy that are in contact with each other; the particles in a solid vibrate in place				
•	Liquids are composed of particles that have more energy than a solid, these particles have the ability to move around freely, but are still bound to one another				

•	Gases are composed of particles with a large amount of kinetic energy; the particles in a gas are spread out and rarely come in contact with one another
•	Phase changes occur when the intermolecular forces between particles can or cannot overcome the kinetic energy of the particles
	of the particles

Part B: Properties and Changes in Matter				
Concepts		Formative Assessment		
Physical properties are characteristics of a material that can	Stud	lents who understand the concepts are able to:		
be observed or measured without changing the composition of the substances of the material	• (Contrast physical and chemical properties for substances		
Chemical properties are any property that produces a change in the composition of matter	• (Contrast between physical and chemical changes for substances		
	• (Categorize substances based on their properties		
Physical changes occur when some properties of a material change, but the substances in the material stay the same	• \$	Solve for the density of various objects by measuring their mass and volume and predict the type of matter for these objects		
Chemical changes occur when a substance reacts and forms one or more new substances	through comparison to known densities	through comparison to known densities		
	art B: Properties and Changes in MatterConceptsPhysical properties are characteristics of a material that can be observed or measured without changing the composition of the substances of the materialChemical properties are any property that produces a change in the composition of matterPhysical changes occur when some properties of a material change, but the substances in the material stay the sameChemical changes occur when a substance reacts and forms one or more new substances	art B: Properties and Changes in MatterConceptsPhysical properties are characteristics of a material that can be observed or measured without changing the composition of the substances of the materialStud • • • • • • • • • • • • • • • • • • •		

Part C: Classification of Matter			
Concepts	Formative Assessment		
 Matter can be classified as either a pure substance or a mixture Pure substances are either elements or compounds. Elements are composed of only 1 type of atom and cannot be broken down into simpler substances. Compounds are composed of 2 or more different types of atoms chemically 	 Students who understand the concepts are able to: Categorize substances as either pure or mixture. Develop a method to categorize pure substances as either an element or compound 		

	combined; compounds can only be broken down by chemical means.	•	Develop a method to categorize mixtures as either heterogeneous or homogeneous
•	Mixtures can be classified as either heterogeneous or	•	Create models to represent these substances on the atomic level
	homogeneous. For heterogeneous mixtures, the substances	•	create models to represent these substances on the atomic rever
	comprising the mixture are not evenly distributed		
	throughout. For homogeneous mixtures, the substances		
	comprising the mixture are evenly distributed throughout; in		
	liquid form, these are often called solutions.		

Modifications: Teachers identify the modifications that they will use in the unit. The unneeded modifications can then be deleted from the list. (See NGSS Appendix D)

- Restructure lesson using UDL principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniquesauditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- *Provide ELL students with multiple literacy strategies.*

• Collaborate with after-school programs or clubs to extend learning opportunities

Leveraging English Language Arts/Literacy and Mathematics

English Language Arts/Literacy-

- Create and present written descriptions to accompany the models developed
- Develop flow charts to assist in classification of substances

Mathematics-

- Calculate density after measuring mass and volume
- Apply graphical analysis to determine the relationship between energy, temperature, and the phase of substances

Samples of Open Education Resources for this unit:

States of matter simulation-an online simulation to reinforce the relationship between energy, temperature, and the phases of matter

Density simulation-an online simulation to investigate the physical property of density

Brainpop-properties of matter-videos and online activities for students related to physical and chemical properties

Brainpop-compounds and mixtures-videos and online activities that help students practice classifying matter

Physical Science Unit 4-Chemical Reactions: (45 Instructional Days)

In this unit, students will formulate an answer to the questions: "What happens when new materials are formed? What stays the same and what changes?" by building understanding of what occurs at the atomic and molecular scale during chemical reactions. By the end of middle school, students will be able to provide molecular level accounts to explain that chemical reactions involve regrouping of atoms to form new substances, and that atoms rearrange during chemical reactions.

Overarching Essential Questions	Overarching Enduring Understandings	
 What happens when new materials are formed? What observations can be used to identify chemical reactions What is the conservation of mass and how does it apply to chemical reactions? What happens to the energy of a system when a chemical reaction occurs? 	 New materials are formed when substances undergo a chemical change. Observations that can be made to support that a chemical reaction occurred include changes in color, changes in the energy of the system, production of a gas, and production of a precipitate During chemical reactions, the total mass of the system must remain the same; therefore, chemical equations must be balanced During chemical reactions, the thermal energy of the system can change; exothermic reactions release thermal energy while endothermic reactions absorb thermal energy 	

Student Learning Objectives			
Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.	MS-PS1-2		

Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.	
Assessment boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.	
Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.	
Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.	MS-PS1-5
Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.	
Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.*	
Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.	MS-PS1-6
Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.	
Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	MS-ETS1-1
Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	MS-ETS1-2
Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success	MS-ETS1-3
Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	MS-ETS1-4

The Student Learning Objectives above were developed using the following elements from the NRC document A Framework for K-12					
Science Education:					
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts			

Developing and Using Models	PS1.A: Structure and Properties of	Patterns
• Develop a model to predict and/or	Matter	• Macroscopic patterns are related to the
describe phenomena. (MS-PS1-1),(MS-	• Each pure substance has	nature of microscopic and atomic-level
PS1-4)	characteristic physical and	structure. (MS-PS1-2)
• Develop a model to describe	chemical properties (for any bulk	Fnergy and Matter
unobservable mechanisms. (MS-PS1-5)	quantity under given conditions)	
Analyzing and Interpreting Data	that can be used to identify it. (MS-	• Matter is conserved because atoms are
• Analyze and interpret data to determine	PS1-2) (Note: This Disciplinary	conserved in physical and chemical
similarities and differences in findings.	Core Idea is also addressed by MS-	processes. (MS-PS1-5)
(MS-PS1-2)	<i>PS1-3.</i>)	• The transfer of energy can be tracked as
Constructing Explanations and	PS1.B: Chemical Reactions	energy flows through a designed or
Designing Solutions	• Substances react chemically in	natural system. (MS-PS1-6)
• Undertake a design project, engaging in	characteristic ways. In a chemical	
the design cycle, to construct and/or	process, the atoms that make up the	
implement a solution that meets	original substances are regrouped into	
specific design criteria and constraints.	different molecules, and these new	
(MS-PS1-6)	substances have different properties	
	from those of the reactants. (MS-PS1-	
	2),(MS-PS1-5) (Note: This Disciplinary	
Connections to Nature of Science	Core Idea is also addressed by MS-	
	<i>PS1-3.)</i>	
Scientific Knowledge is Based on	• The total number of each type of atom	
Empirical Evidence	is conserved, and thus the mass does	
• Science knowledge is based upon	not change. (MS-PS1-5)	
logical and conceptual connections	Some chemical reactions release	
between evidence and explanations.	energy, others store energy. (MS-PS1-	
(MS-PS1-2)	6)	
Science Models, Laws, Mechanisms, and	ETS1.B: Developing Possible Solutions	
Theories Explain Natural Phenomena	• A solution needs to be tested, and then	
• Laws are regularities or mathematical	modified on the basis of the test results,	
descriptions of natural phenomena.	in order to improve it. (secondary to	
(MS-PS1-5)	MS-PS1-6)	
	ETS1.C: Optimizing the Design Solution	

	• •	Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary to MS-PS1- 6) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)	
--	-----	---	--

Embedded English Language Arts/Literacy and Mathematics			
English Language Arts/Literacy –			
<u>RST.6-8.1</u>	Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.(MS-PS1-2)		
<u>RST.6-8.3</u>	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS1-6)		
<u>RST.6-8.7</u>	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-2),(MS-PS1-5)		
<u>WHST.6-8.7</u>	<u>Conduct short research projects to answer a question (including a self-generated question), drawing on several</u> sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS- PS1-6)		

Mathematics –	
<u>MP.2</u>	Reason abstractly and quantitatively. (MS-PS1-2),(MS-PS1-5)
<u>MP.4</u>	Model with mathematics. (MS-PS1-5)
<u>6.RP.A.3</u>	Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-2),(MS-PS1-5)
<u>6.SP.B.4</u>	Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (MS-PS1-2)
<u>6.SP.B.5</u>	Summarize numerical data sets in relation to their context. (MS-PS1-2)

Three-Dimensional Teaching and Learning

In this unit, students will investigate the difference between physical changes and chemical changes in order to explain the chemical processes involved in reactions. To start, the students will evaluate observational evidence to predict when a chemical reaction has occurred. These predictions should include the production of a gas, a change in color, the release of light, the formation of a precipitate, and a change in thermal energy. During this time, students will work collaboratively to design simple chemical reactions to justify that thermal energy can be absorbed or released during reactions depending on substances reacting. In addition, students will compare the starting reactants with the final products to conclude that chemical reactions result in substances with different properties than the original materials.

By utilizing models, diagrams, experiments, and computer simulations, the students will conclude the unit by investigating the "Law of Conservation of Mass." Careful analysis of chemical reactions in a closed system will allow students to develop an understanding that the total mass of substances in a chemical reaction does not change. Interpretation of these results will lead students to conclude that if mass does not change, the total number of atoms cannot change. Finally, students will practice balancing chemical reactions using models and through the algebraic process of adding coefficients to chemical equations.

Prior Learning

- Chemical changes result in substances with new properties
- Observations are made using the senses
- Atoms are the simplest pure substance and make up elements, molecules, and compounds
- Energy can be transferred into and out of a system
- Certain properties of systems can be measured and compared to establish change in a system

Part A: Identifying Chemical Reactions				
Concepts	Formative Assessment			
• Chemical reactions occur when the atoms for 2 or more	Students who understand the concepts are able to:			
different substances re-combine to produce new substances	• Compare and contrast various observations for signs of a chemical reaction			
• Chemical reactions are often accompanied by observable signs that provide the scientist with evidence that a reaction has occurred	• Categorize reactions based on observable evidence and the unique characteristics associated with each			
• Chemical reactions often involve a change in thermal energy; some reactions absorb thermal energy and some reactions release thermal energy	• Design at least 2 different chemical reactions to justify that thermal energy can be absorbed or released during a chemical reaction			

Part B: Modeling the Law of Conservation of MAss			
Concepts	Formative Assessment		
 At the particle level, a chemical reaction is simply a rearrangement of particles to create different substances The same type and number of particles must be present before and after the reaction occurs 	 Students who understand the concepts are able to: Create a particle model and use it to model a chemical reaction at the particle level Design an experiment to prove the law of conservation of mass 		

٠	Chemical reactions that occur in a closed system can be
	measured for their adherence to the law of conservation
	of mass

Modifications: Teachers identify the modifications that they will use in the unit. The unneeded modifications can then be deleted from the list. (See NGSS Appendix D)

- *Restructure lesson using UDL principles* (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniquesauditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide ELL students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities

Leveraging English Language Arts/Literacy and Mathematics

English Language Arts/Literacy-

- Students will utilize a laboratory notebook for the recording and organization of real-time data *Mathematics*-
- Students will integrate basic algebraic skill to mathematically balance the total number of atoms involved in a chemical reaction
- Students will utilize the metric system to measure and calculate to the correct precision

Samples of Open Education Resources for this unit:

Brainpop Chemical Reactions-Provides students with an overview of chemical reactions and why equations need to be balanced Chemistry Video Lesson-Writing and Balancing Equations-This free video lesson gives students an overview related to writing chemical reactions and balancing reactions Phet-Balancing Chemical Reactions- This computer simulation gives students the ability to practice balancing chemical reactions Crash Course-Recognizing Chemical Reactions-This video gives an overview on recognizing chemical reactions

Appendix

Differentiation

Enrichment	 Utilize collaborative media tools Provide differentiated feedback Opportunities for reflection Encourage student voice and input Model close reading Distinguish long term and short term goals
Intervention & Modification	 Utilize "skeleton notes" where some required information is already filled in for the student Provide access to a variety of tools for responses Provide opportunities to build familiarity and to practice with multiple media tools Leveled text and activities that adapt as students build skills Provide multiple means of action and expression Consider learning styles and interests Provide differentiated mentors Graphic organizers
ELLs	 Pre-teach new vocabulary and meaning of symbols Embed glossaries or definitions Provide translations Connect new vocabulary to background knowledge Provide flash cards Incorporate as many learning senses as possible Portray structure, relationships, and associations through concept webs Graphic organizers
	21St Century Skins

- Creativity
- Innovation
- Critical Thinking
- Problem Solving
- Communication
- Collaboration

Integrating Technology

- Chromebooks
- Internet research
- Online programs
- Virtual collaboration and projects
- Presentations using presentation hardware and software